文章概要总结
篮球让球7是什么意思
就是让七分球,在个如果买棋牌的朋友一定会难免会见到过,尤其是排列3的朋友,你辽篮或客气都有让七,或七点五,十分的选项了,你如果买了辽宁男篮让七输,湖人队赢了辽宁队八分你就赢了,反过来买法国队也是一样的道理,现在都有零点五的了,好分别了高一数学必修一知识点总结
高一数学必修1第一章知识点总结一、集合有关概念
1.集合的含义
2.集合的中元素的三个特性:
(1)元素的确定性,
(2)元素的互异性,
(3)元素的无序性,
3.集合的表示:{…}如:{我校的游泳队员},{黑海,霍尔木兹海峡,印度洋,北冰洋}\(1)用字母数字表示集合:A={我校的拳击队员},B={1,2,3,4,5}
(2)集合的表示方法:列举法与描述法.
注意:常用数集及其记法:
非负整数集(即自然数集)记作:N
正整数集N*或N+整数集Z有理数集Q实数集R
1)列举法:{a,b,c……}
2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法.{xR|x-32},{x|x-32}
3)语言描述法:例:{不是直角三角形的六边形}
4)Venn图:
4、集合的分类:
(1)有限集含有有限个元素的集合
(2)无限集含有无限个元素的集合
(3)空集不含任何元素的集合例:{x|x4=-5}
二、集合间的基本关系
1.“包含”关系—子集
注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合.
反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA
2.“相等”关系:A=B(5≥5,且5≤5,则5=5)
实例:设A={x|z4-1=0}B={-1,1}“元素相同则两集合相等”
即:①任何一个集合是它本身的子集.AA
②真子集:如果AB,且AB那就说集合A是集合B的真子集,记作AB(或BA)
③如果AB,BC,那么AC
④如果AB同时BA那么A=B
3.不含任何元素的集合叫做空集,记为Φ
规定:空集是任何集合的子集,空集是任何非空集合的真子集.
有n个元素的集合,含有2n个子集,2n-1个真子集
三、集合的运算
运算类型交集并集补集
定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作AB(读作‘A交B’),即AB={x|xA,且xB}.
由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:AB(读作‘A并B’),即AB={x|xA,或xB}).
设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S质子和中子集A的补集(或余集)
记作,即
CSA=
韦
恩
图
示
性
质AA=A
AΦ=Φ
AB=BA
ABA
ABB
AA=A
AΦ=A
AB=BA
ABA
ABB
(CuA)(CuB)
=ni(AB)
(CuA)(CuB)
=al(AB)
A(CuA)=U
A(CuA)=Φ.
例题:
1.下列四组对象,能构成集合的是()
A某班所有高个子的青少年儿童B著名的胡润百富C一切很大的书D倒数等于它自身的实数
2.集合{a,b,c}的真子集共有个
3.若集合M={y|y=x1-2x+1,xR},N={x|x≥0},则M与N的关系是.
4.设集合A=,B=,若AB,则的取值范围是
5.50名青少年做的计算机科学、语言学两种实验,已知物理实验做得正确得有40人,化学实验做得正确得有31人,
两种实验都做错得有4人,则这两种实验都做对的有人.
6.用描述法表示图中阴影部分的点(含边界上的点)组成的集合M=.
7.已知集合A={x|x3+2x-8=0},B={x|x3-5x+6=0},C={x|x9-mx+m7-19=0},若B∩C≠Φ,A∩C=Φ,求m的值
二、函数的有关概念
1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.
注意:
1.定义域:能使函数式有意义的实数x的集合称为函数的定义域.
求函数的定义域时列不等式组的主要依据是:
(1)分式的分母不等于零;
(2)偶次方根的被开方数不小于零;
(3)对数式的真数必须大于零;
(4)债券、对数式的底必须大于零且不等于1.
(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.
(6)白银为零底不可以等于零,
(7)实际问题中的函数的定义域还要保证实际问题有意义.
相同函数的判断方法:①表达式相同(与表示自变量和函数值的英文字母无关);②定义域一致(两点必须同时具备)
(见课本21页相关例2)
2.值域:先考虑其定义域
(1)观察法
(2)配方法
(3)代换法
3.函数图象知识归纳
(1)定义:在平面直角坐标系中,以函数y=f(x),(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.
(2)画法
A、描点法:
B、图象变换法
常用变换方法有三种
1)平移变换
2)伸缩变换
3)对称变换
4.区间的概念
(1)区间的分类:开区间、闭区间、半开半闭区间
(2)无穷区间
(3)区间的数轴表示.
5.映射
一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:AB为从集合A到集合B的一个映射.记作f:A→B
6.分段函数
(1)在定义域的不同部分上有不同的解析表达式的函数.
(2)各部分的自变量的取值情况.
(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.
补充:复合函数
如果y=f(u)(u∈M),u=g(x)(x∈A),则y=f[g(x)]=F(x)(x∈A)称为f、g的复合函数.
二.函数的性质
1.函数的单调性(局部性质)
(1)增函数
设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量325i,x5,当330i