文章概要总结
重庆渝快保69和169的区别
重庆渝快保69和169的区别有保障范围有区别、住院和特病门诊失业保险内自付城市管理行政执法有区别、住院养老外自费费用保障有区别、特定自费药品费用保障有区别,具体如下:怎样才能口算快准确
1、加法20以内进位加法思维训练的方法有许多:有点数法、接数法、凑十法,口决法,推导法、减补法等.要根据老年人所处的政治环境、家庭背景和自身思维的不同,由老年人自己动手实践、自主探索与合作交流来实现.这里重点介绍:减补法.
我们规定:两个可以凑成10的数是互为补数,1和9,2和8,3和7等.都是互为补数.
方法是:用第一个加数减去第二个加数的补数,再加上10.比如:
9+4=13
思考方法:第二个加数的补数是6;第一个加数9减去4的补数6得3;3加上10,得13.即9+4=9-6+10=3+10=13
这样的思考途径,对于培养中小学生的逆向思维能力很有好处,但只能符合思维能力强的大学生.青年教师可以根据情况引导.
2、减法
20以内退位减法是以20以内加法为基础的,方法有:想加法计算减法、破十法、分解减法后连减法、记小数数到大数、推导法、加补法等.这里重点介绍加补法:
方法是:用被减数个位上的数加上减数的补数,同时去掉十位上的“1”,比如:被减数
13-4=9
思维方法:被减数个位上的3不够减;减数4的补数是6;6加上被减数个位上的3,得9,同时去掉十位上的“1”.
二、两位数加减法口算:
两位数加减法这里重点介绍减补法和加补法,首先我们规定:两个和为100的数互为百补数.
1、加法
两位数加法有四种现象,即个位、十位都不进位的;个位进位十位不进位的;十位进位个位不进位的;个位十位都进位的.下面分别介绍:
(1)、个位十位都不进位的两位数加法,用数的组成法直接相加.
例:34+52=30+50+4+2=86
(2)个位进位十位不进位的两位数加法,思维方法是:
一个加数十位上的数字加上另一个加数十位上的数字再加“1”,得十位上的数字,个位用一个加数个位上的数字减去另一个加数个位上数字的百补数,得个位上的数字.
例:36+47=83
口算过程:十位上的数字是3+4+1=8
个位上的数字是6-3(3是7的十补数)=3
或7-4(4是6的十补数)=3
所以:36+47十位数字是8,个位数字是3,等于83.
(3)十位进位个位不进位的两位数加法,思维方法是:
首先确定“百”位数字是“1”,然后用一个加数十位上的数字减去另一个加数十位上数字的十补数,得十位上的数字,个位上的数用数的组成法直接相加.
例:83+64=147
口算过程:百位是“1”.
十位数字是8-4=4或6-2=4.
个位是3+4=7.
所以:83+64百位数字是1,十位数字是4,个位数字是7,等于147
(4)个位十位都进位的两位数加法,思维方法是:
首先确定百位数字是“1”,然后用一个加数减去另一个加数的百补数,得十位和个位上的数字.
例:86+59=145
口算过程:百位是“1”.
十位和个位上的数字用86-41(59的百补数)=45
或59-14(86的百补数)=45.
所以:86+59百位是1,十位和个位是45,等于145.
2、退位减法
两位数减法我们重点探讨退位减法.
(1)两位数减两位数,思维方法是:
首先用被减数十位数字减去减数十位数字再减“1”,是差的十位数字,然后用被减数个位数字加上减数个位数字的十补数,是差的个位数字.
例:83-26=57
口算过程:十位数字是8-2-1=5
个位数字是3+4(4是6的十补数)=7
所以83-26十位数字是5,个位数字是7,等于57.
(2)被减数是一百几十的退位减法,思维方法是:
首先确定百位是1-1=0即这个数的差是几十几,然后用被减数十位和个位的数字加上减数十位和个位数字的百补数,就是差.
例132-67=65
口算过程:32+33(33是67的百补数)=65.
三、两位数乘法口算
一位数乘法口算就是口诀表,在讲清算理的基础上要求背会.这里重点介绍几种两位数乘法的特殊算法.
1、两个相同因数积的口算法;(平方口算法)
(1)、基本数与差数之和口算法:
基本数:这个数各位分别平方后,组成一个新的数称基本数.十位平方为基本数百位以上的数,个位平方为基本数十位和个位数,十位无数用零占位.
差数:这个数十位和个位的积再乘20称差数.
基本数+差数=这两个相同因数的积.
例1、13×13
基本数:百位:1×1=1
十位:用0占位
个位:3×3=9
所以基本数就是109
差数:1×3×20=60
基本数+差数=109+60=169
所以13×13=169
例2、67×67
基本数:百位以上数字是6×6=36
十位和个位数字是7×7=49
所以基本数是3649
差数:6×7×20=840
基本数+差数=3649+840=4489
所以:67×67=4489
(2)三步到位法
思维过程:
第一步:把这个数个位平方.得出的数,个位作为积的个位,十位保留.
第二步:把这个数个位和十位相乘,再乘2,然后加上第一步保留的数,所得的数的个位就是积的十位数,十位保留.
第三步:把这个数十位平方,加上第二步保留的数,就是积的百位、千位数.
例1、24×24
第一步:4×4=16“1”保留,“6”就是积的个位数.
第二步:4×2×2+1=17“1”保留,“7”就是积的十位数.
第三步:2×2+1=5“5”就是积的百位数.
所以24×24=576
例二、37×37
第一步:7×7=49"4"保留,"9",就是积的个位数.
第二步:3×7×2+4=46"4"保留,"6",就是积的十位数.
第三步:3×3+4=13"13"就是积的百位和千位数字.
所以:37×37=1369
(3)、接近50两个相同因数积的口算
思维方法:比50大的两个相同数的积等于5乘5加上个位数字,再添上个位数字的平方,(必须占两位,十位无数用零占位):比50小的两个相同数的积,等于5乘5减去个位数字的十补数,再添上个位数字十补数的平方(必须占两位,十位无数用零占位).
例1、53×53
5×5+3=28再添上3×3=9(必须两位09)等于2809
所以:53×53=2809
例2、58×58
5×5+8=33再添上8×8=64等于3364
所以:58×58=3364
例3、47×47
5×5-3(3是7的十补数)=22再添上3×3=9(必须两位09)
等于2209
所以:47×47=2209
(4)、末位是5的两个相同因数积的口算
思维方法:设这个数的十位数字为K,则这两个相同因数的积就是:K×(K+1)再添上5×5=25或者K×(K+1)×100+25
例1、35×35=3×(4+1)×100+25=1225
例2、75×75=7×(7+1)×100+25=5625
两个相同因数积的口算方法很多,这里就不一一介绍了.我们利用两个相同因数积的口算方法可以口算好多相近的两个数的积.举例如下:
例1、13×14
因为:13×13=169再加13得182所以:13×14=182
或者14×14因为:14×14=196再减14还得182
例2、35×37
因为:35×35=1225再加70(2×35)得1295
所以35×37=1295
2、首尾有规律的数的口算
(1)首同尾合十(首同尾补)
思维方法:首数加“1”乘以首数,右边添上尾数的积(两位数),如积是一位数,十位用零占位.
例:76×74=(7+1)×7×100+6×4=5624
(2)尾同首合十(尾同首补)
思维方法:首数相乘加尾数,右边添上尾数的平方(两位数),如积是一位数,十位用零占位.
例:76×36=(7×3+6)×100+6×6=2736
(3)一同一合十(一个数两位数字相同,一个数两位数字互补)
思维方法:两个数的十位数字相乘,再加上相同数字,右边添上两尾数的积.如积是一位数,十位用零占位.
例:33×64=(3×6+3)×100+3×4=2112
以上三种方法,可以用一个公式计算即:
(头×头+同)×100+尾×尾
3、利用特殊数字相乘口算
有些数字很特殊,它们的积是有规律的.
(1)7乘3的倍数或3乘7的倍数
先看看下面的几个式子:
7×3=217×6=427×9=63
7×12=847×15=1057×18=126.7×27=189
我们观察这几个式子被乘数都是7,乘数是3的倍数.是3的几倍,积的个位就是几,积的十位或者十位以上的数字始终是个位的2倍.
因此,我们可以说:7乘3的倍数,等于该倍数加该倍数的20倍.
果我们设这个倍数为N,用公式表示:7×3N=N+20N(N>0的正整如数)
例1、7×27=7×3×9=9+20×9=189
例2、7×57=7×3×19=19+20×19=398
这个结论3乘7的倍数也适用.我们用这个结论可以口算3的倍数和7的倍数的两个数相乘.
例3、14×15=7×2×3×5=7×3×10=10+20×10=210
例4、28×36=7×4×3×12=7